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On Secant Updates for Use in 
General Constrained Optimization 

By Richard Tapia* 

Abstract. In this paper we present two new classes of successive quadratic program- 
ming (SQP) secant methods for the equality-constrained optimization problem. One 
class of methods uses the SQP augmented Lagrangian formulation, while the other 
class uses the SQP Lagrangian formulation. We demonstrate, under the standard as- 
sumptions, that in both cases the BFGS and DFP versions of the algorithm are locally 
q-superlinearly convergent. To our knowledge this is the first time that either local or 
q-superlinear convergence has been established for an SQP Lagrangian secant method 
which uses either the BFGS or DFP updating philosophy and assumes no more than the 
standard assumptions. Since the standard assumptions do not require positive definite- 
ness of the Hessian of the Lagrangian at the solution, it is no surprise that our BFGS 
and DFP updates possess the hereditary positive definiteness property only on a proper 
subspace. 

1. Introduction. By a successive quadratric programming (SQP) quasi-Newton 
method for the constrained optimization problem 

minimize f (x) 

subject to g(x) = 0, 

where f: Rn -+ R and g: Rn -+ R' (m < n), we mean the iterative process 

x+= x + s 

(1.2) A+ = A + AA, 

Bl+ = B(x, SI A+ , Al), 

where B is an update function and s and \AA are respectively the solution and the 
multiplier associated with the solution of the quadratic program 

minimize V'i(x, A)Ts+ ? sT B1s 

(subject to Vg(x)Ts + g(x) = 0. 

In (1.3), Vxl(x, A) is the gradient (with respect to x) of the Lagrangian 

(1.4) l(x, A) = f(x) + A g(x) 

evaluated at the current iterate (x, A). In (1.3), Bi is intended to be an approx- 
imation to V2l(x, A), the Hessian of the Lagrangian at (x, A). We denote by x* 
a solution of problem (1.1) with associated multiplier A., i.e., A. is such that 
Vxl(x*, A*) = 0. 
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We call (1.2)-(1.3) an SQP Lagrangian secant method if B+ satisfies the La- 
grangian secant equation 

(1.5) B+s = yi, 

where 

(1.6) Yl = Vxl(x+, A+) - Vxl(x, A+) 

and x, x+, s and A+ are as in (1.2)-(1.3). See Algorithm Al of Appendix A. 
It is common practice to use Vf(x) instead of Vl(x, A) in (1.3). With this 

change, A+ and not \AA will be the multiplier associated with the solution of the 
quadratic program. The use of VIl(x, A) provides a more convenient framework for 
our current investigations. Strictly speaking, we should probably refer to A as the 
vector of multipliers or the multiplier vector; however, we will take the liberty of 
merely using the term multiplier. 

We are interested in the BFGS and the DFP secant updates. However, we feel 
that our understanding will be enhanced if we parallel our considerations with 
an update which (at least in theory) is effective without the assumption that 
V2l(x, A.) is positive definite. Toward this end, the obvious choice is the PSB 
secant update. 

Consider the following class of secant updates from unconstrained optimization 
that can be used with the SQP secant method (1.2)-(1.6): 

(1.7a) B+ = B + SECANT (s, y, B, v), 

where 

(17.b) SECANT (s, y, B. v) = (y - Bs)vT + v(y - Bs)T (y - Bs)TsvvT 
VTS (VT s)2 

Following Dennis and Walker [9], we call v the scale of the secant update (1.7). The 
following are well-known choices of scale: 

(1.8) PSB: v = s 

(1.9) DFP:v=y 

(1.10) BFGS: v=y+aBs, o= . 

For further details, see Dennis and More [7] (in particular Theorem 7.3) and also 
Dennis and Schnabel [8]. The scale v is often a function of s, y or B, as is the case 
in (1.8)-(1.10). When the need arises, we will write v(s, y, B). Also, the notation 
SECANT (s, y, B, v) implies that the values of the arguments of v are s, y, and B, 
respectively, i.e., v = v(s, y, B). If other argument values are desired, or if we wish 
to emphasize the arguments used, then we will use different notation. 

Much is known about the theoretical and numerical properties of these updates 
when used in the context of unconstrained optimization. For details, see Dennis 
and More [7], Fletcher [10] and Dennis and Schnabel [8]. It is known that all three 
updates give local q-superlinear convergence. The BFGS and the DFP updates re- 
quire a symmetric and positive definite Hessian, while the PSB update only requires 
symmetry and invertibility of the Hessian. It is generally felt that the BFGS has su- 
perior numerical properties, and it is the preferred update for use in unconstrained 
optimization. 
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The following are standard assumptions in the theory of quasi-Newton methods 
for problem (1.1): 

Al: f,gii= 1, ... , m, have second derivatives which are Lipschitz continuous 
in an open neighborhood Q of the local solution x*. 

A2: V21(x*, A.) is nonsingular. 

A direct calculation shows that 

V21(x*, A*) = (V X*l A*) Vg(x*)') k. g(x*)T 0 J 
Moreover, it is well known that Assumption A2 is equivalent to the two assump- 

tions 

A2'a: Vg(x*) has full rank; 
A2'b: V21(x*, A*) is positive definite on S(x*) = {fj: Vg(X*)T7 = 0}. 

Under these standard assumptions the local q-superlinear convergence in (x, A) 
of the SQP PSB secant method was established by Han [15] and Tapia [19]. Tapia 
included the Broyden update and Han [15], [16] considered other updates. 

From the statements made above, it follows that the use of the BFGS and DFP 
updates is precluded unless one makes the stronger assumption that V2l(x*, A*) is 
positive definite on the entire space. This unfortunate circumstance has been the 
subject of numerous research papers, including Powell [18], Coleman and Conn [6], 
Fontecilla [11], Nocedal and Overton [17], Bartholomew-Biggs [2], and the present 
work. Assuming the positive definiteness of V2l(x*, A*), Han [15], [16] established 
the local q-superlinear convergence in (x, A) of the SQP Lagrangian BFGS and DFP 
secant methods. Under this same positive definiteness assumption Boggs, Tolle and 
Wang [4] and Fontecilla, Steihaug and Tapia [12] established the local q-superlinear 
convergence in x of the SQP Lagrangian BFGS and DFP secant methods. 

Working with the SQP Lagrangian BFGS secant method, Powell [18] proposed 
modifying y' in (1.6) in the following manner 

(1.lla) al = GyI + (1 - 0)Bis, 

where 

( 1 if yT's > EsTB1s, 

(1. 1lb) 0= (1 -E)'sTBIS 

1 sT~-y~s otherwise 

and E is a small positive constant, e.g., E = 0.2. The update B+ is then obtained as a 
BFGS secant update using al instead of yl. This modification guarantees that T 's > 
0 and therefore allows the BFGS secant update to maintain hereditary positive 
definiteness; however, the Lagrangian secant equation (1.5) is lost. Assuming that 
the iteration sequence {Xk} generated by the modified algorithm converged, Powell 
was able to show that the convergence was r-superlinear. Bartholomew-Biggs [2] 
suggested various changes to the Powell modification and presented some numerical 
experimentation. 

Recently, Boggs and Tolle [3] demonstrated that if in the SQP Lagrangian BFGS 
or DFP secant methods, Xk converged q-linearly to x*, Ak converged q-linearly to 
A*, and the convergence of Xk to x* satisfied an additional condition (tangential 
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convergence), then the convergence of Xk to x* would be q-superlinear even if 
V1l(x., A.) is not positive definite. 

An often-used alternative to the restrictive assumption of requiring V2l(x., A*) 
to be positive definite is to work with the augmented Lagrangian 

(1.12) L(x, A) = l(x, A) + 1Cg(x)Tg(x) (C > 0) 

instead of the Lagrangian l(x, A) given by (1.4). In this case, B1 in (1.3) is replaced 
with BL, an approximation to V2L(x, A), and Vx1 in (1.3) and (1.6) is replaced 
with VxL. This approach leads to what we will call the SQP augmented Lagrangian 
quasi-Newton methods (see Algorithm A2 of Appendix A). The motivation for this 
consideration comes from the fact that under the standard assumptions, for suffi- 
ciently large C, V2L(x*, A*) is positive definite (see Corollary 12.9 and Theorem 
12.10 of Avriel [1]) and the BFGS and DFP secant updates can be used in (1.2). 
Local q-superlinear convergence in (x, A) of the SQP augmented Lagrangian BFGS 
and DFP secant methods was established by Han [15], Tapia [19] and Glad [14]. 
Local q-superlinear convergence in x was established by Fontecilla, Steihaug and 
Tapia [12]. 

The SQP augmented Lagrangian quasi-Newton methods have the serious draw- 
back of having to choose C in the absence of adequate guidelines. Moreover, large 
C seems to present severe numerical problems; see the examples given in Tapia 
[19] and Nocedal and Overton [17]. We feel that the various components in this 
approach do not fit together well, and this bad fit could account for some of the 
numerical difficulties. The present work is concerned with effectively combining the 
theoretical advantages of the augmented Lagrangian path with the BFGS or DFP 
secant update in order to obtain a better fit of the two components. 

In Section 2 we recall two quasi-Newton formulations for problem (1.1) which 
are equivalent to the SQP augmented Lagrangian quasi-Newton formulation. These 
equivalent formulations will be used in other sections. In Section 3 we take a very 
close look at the structure present in the Hessian of the augmented Lagrangian and 
make several observations concerning the role of the penalty constant. 

In Section 4 we utilize structure to derive what we call the SQP augmented scale 
secant methods. These algorithms are SQP Lagrangian secant methods (as opposed 
to SQP augmented Lagrangian secant methods) in that the subproblem is of the 
form (1.3) and the Hessian approximation satisfies the Lagrangian secant equation 
(1.5). We will see that a complete use of structure leads to an algorithm where only 
the scale in the secant update is affected. This change of scale is important for the 
BFGS and DFP updates and will not be active for the PSB update (where it is not 
needed). In the case of the BFGS and DFP updates, the updates will possess the 
hereditary positive definiteness property only on an appropriate proper subspace. 
However, the change of scale allows us to view the augmented scale BFGS and DFP 
updates as least-change secant updates, even when y Ts is negative. 

In Section 5 we utilize structure to present the SQP structured augmented La- 
grangian secant methods. These algorithms possess the flavor of the modified BFGS 
algorithm which Powell [18] proposed. Specifically, structure leads us to suggest a 
modification of yl so that the BFGS and DFP updates will possess the hereditary 
positive definiteness property. However, instead of sacrificing the Lagrangian secant 
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equation we replace it with a structured augmented Lagrangian secant equation. 
It is this latter consideration which will allow us to establish local q-superlinear 
convergence in Section 7. 

In Section 6 we consider the effect of letting the penalty constant become ar- 
bitrarily large in the SQP augmented scale BFGS and DFP methods. Both these 
updates give the same limit update. It follows that any update which is a member 
of the Broyden convex class will produce the same limit update. The role of this 
limit update will be discussed in Section 8. 

In Section 7 we demonstrate that both the SQP augmented scale BFGS and 
DFP secant methods and the SQP structured augmented Lagrangian BFGS and 
DFP secant methods are locally q-superlinearly convergent. In Section 8 we offer a 
summary of our results and some concluding remarks. For purposes of convenience 
and reference we offer Appendix A, where the various SQP secant methods dis- 
cussed in the paper are collected and catalogued; Appendix B contains justification 
for the statement made in Section 3 that a particular second-order term is respon- 
sible for the bad fit in the SQP augmented Lagrangian quasi-Newton methods and 
consequently should be left out of any structured approximations. 

2. Equivalent Formulations. The material in this section is taken from Tapia 
[20]. In addition to the three equivalent formulations which we are about to de- 
scribe, several other interesting formulations can be found in that paper. 

Suppose that we are given an iterate (x, A) as an approximation to (x*, A.) 
(the solution of problem (1.1) and its associated multiplier) and a positive definite 
matrix BL as an approximation to V'L(x, A). We now present three equivalent 
quasi-Newton formulations for constructing the subsequent iterate (x+, A+). 

SQP Formulation. Recall that the SQP augmented Lagrangian quasi-Newton 
method consists of determining (x+, A+) = (x + s, A + ASA) by choosing s and \AA 
to be the solution and the multiplier associated with the solution of the quadratic 
program 

minimize VL(x, A)Ts + ST BLS 

subject to Vg(x)Ts + g(x) = 0. 

Extended System Formulation. If we apply the first-order necessary conditions 
to the quadratic programs (2.1), we see that the SQP quasi-Newton step s and its 
associated multiplier A+ can be obtained from the following linear system: 

(2.2) V Vg(x) ? )( s / ( g(x) ) 
Since (2.1) is a convex program, the first-order necessary conditions are also suffi- 
cient conditions, and (2.1) and (2.2) will have the same solutions (which by strict 
convexity are necessarily unique). 

Multiplier Update Formulation. A straightforward calculation can be used to 
show that (x+, A+) obtained via (2.2) can be written as 

(2.3a) A+ = (Vg(x)TB-lVg(x)1)-(g(x) _ 
7g(X)TB-(Vf (x) + Vg(x)Cg(x))) 

and 

(2.3b) x+ = x - BH1 V7L(x, A+). 
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In Tapia [19] and Fontecilla, Steihaug and Tapia [12], (2.3) is referred to as the 
diagonalized multiplier method. In Tapia [20] and in the present work, (2.3) is called 
the multiplier update method. We prefer this latter terminology since this is the 
only formulation where the multiplier update is given explicitly; moreover, the term 
"diagonalized" has often been misunderstood. 

3. Structure in the Hessian of the Augmented Lagrangian. The ob- 
jective of a secant method for constrained optimization is to obtain an effective 
algorithm without calculating second-order information. As has been continually 
demonstrated (see Tapia [19], Tapia [20] and Nocedal and Overton [17] for exam- 
ple), it is also advisable to take advantage of structure, whenever possible, and 
not approximate first-order information-especially first-order information which 
will be calculated in another part of the algorithm. These comments serve to mo- 
tivate the investigation conducted in this section and the steps taken in Section 
4. Throughout the remainder of this paper, when we use S as a superscript or 
a subscript, it will signify that structure was utilized in forming the quantity in 
question. 

We will be using quantities defined in the previous section. Observe that 

(3.1) V2L(x, A) = V2l(x, A) + Cg(x) V2g(x) + CVg(x)Vg(x)T 

and 

(3.2) V2L(x*, A*) = V2l(x*, A") + CVg(x*)Vg(x*)T. 

In (3.1) we use g(x) V2g(x) to mean g1(x)V2g1(x) + ... + gm(x)V2gm(x). The 
structure in (3.1) and (3.2) is readily apparent. However, it is not at all clear 
whether an approximation of V2L(x, A) should take into account the term Cg(x) 
V2g(x) which appears in (3.1), but which does not appear in (3.2) (i.e., vanishes 
at the solution). The standard (unstructured for the purposes of this discussion) 
SQP augmented Lagrangian secant methods, described in the previous section, 
takes this term into consideration. To see this, merely recall that the YL used 
in the secant update is defined to be the difference of gradients VxL(x+, A+) - 
VxL(x, A+). It is our considered opinion that every effort should be made to 
construct approximations which ignore the term Cg(x) V2g(x). The arguments 
justifying this opinion are not a main part of the current research and are therefore 
relegated to Appendix B. 

The following proposition concerning structure was given by Tapia [19]. We have 
slightly reworded it to fit our present needs. 

PROPOSITION 3. 1. Suppose that B, is positive definite on S(x) = {rJ: Vg(x)Tj 
= 0}. Then the SQP augmented Lagrangian quasi-Newton method which uses 

(3.3) Bs = Bi + CVg(x)Vg(x)T 

as an approximation to V2L(x, A) generates the same iterate as the SQP Lagrangian 
quasi-Newton method that uses B1 (from (3.3)) as an approximation to V2 1(X, A). 

Proof. The positive definiteness assumption guarantees that both iterates exist. 
The proof now follows from considering (2.2) and observing that the contribution 
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of the form 

(3.4) CVg(x)(Vg(x) Ts + g(x)) 

must be zero. El 
In conclusion, if we remove g(x) V2g(x) from the SQP augmented Lagrangian 

formulation, then Proposition 3.1 seemingly removes any further dependence on 
C, and it appears as if structure effectively reduces the role of the augmented 
Lagrangian to that of the Lagrangian. In the following section we will see that this 
situation is quite subtle, and the structure in the augmented Lagrangian can be 
utilized in a most effective manner. 

4. The Augmented Scale Secant Update. Basically, what the reader should 
expect in this section is that (even though Proposition 3.1 has led us to believe that 
structure removes dependence on the penalty constant) the secant update will not 
be necessarily independent of the penalty constant. The penalty constant will have 
the effect of changing the scale in the secant update (see (1.7)). This change of scale 
seems to be important for updates which in unconstrained optimization require a 
positive definite Hessian, e.g., the BFGS and DFP updates, and seems not to change 
the scale in updates which do not require a positive definite Hessian, e.g., the PSB 
update. 

Suppose we decide to use a secant method for problem (1.1). If we use the 
Lagrangian formulation (see Algorithm Al of Appendix A), the choice for y in 
(1.7) is 

(4.1) Yi = VXIl(x+, A+) - VXl(x, A+); 

while if we use the augmented Lagrangian formulation (see Algorithm A2 of Ap- 
pendix A), the choice for y is 

(4.2) YL = V AL(X+, +)- VL(x, A+), 

which can be rewritten as 

(4.3) Yi + C(Vg(x+)g(x+) - Vg(x)g(x)). 

By subtracting and adding CVg(x+)g(x) we can write (4.3) as 

(4.4) Yl + C[Vg(x+)(g(x+) - g(x)) + (Vg(x+) - Vg(x))g(x)]. 

By performing two obvious one-term Taylor expansions in (4.4) we interpret (4.4) 
as an approximation to 

(4.5) Yi + C[Vg(x+)Vg(x+)Ts + g(x) Vg2(x+)s]. 

Taking into account the comments made in Section 3, we are led to define 

(4.6) Y = Yi + CVg(X+)Vg(X+)Ts 

as our structured form of (4.2). Suppose that we have obtained s, x+ and A+ 
from the SQP Lagrangian quasi-Newton method using B1 as an approximation to 
V2l(x, A). Then from Section 3 we have 

(4.7) Bs = B1 + CVg(X+)Vg(X+)T 
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as a structured approximation to V2L(x, A) and may consider the secant update of 
Bs: 

(4.8) (Bs)+ = Bs + SECANT (s, ysB, VL), 

where VL = V(s, y S BS) and v is the scale of the particular update in question (see 
(1.7)). 

Proposition 3.1 says that if we now use (Bs)+ in the SQP augmented Lagrangian 
method, we are doing no more and no less than using the SQP Lagrangian method 
with 

(4.9) B+= B + SECANT (sysBs, VL). 

The following proposition shows that (4.9) is merely a Lagrangian secant update. 
Consequently, a complete use of structure takes an SQP augmented Lagrangian 
secant method and reduces it to an SQP Lagrangian secant method. 

PROPOSITION 4.1. If yi, ysj, B1 and Bs are as above, then 

(4.10) SECANT (s,ysBS) = SECANT (s,yl,BL, VL). 

Consequently, the update (4.9) can be written as 

(4.11) Bj+ = B1 + SECANT (s,yl,BL, VL) 

and satisfies the Lagrangian secant equation 

Bl+s = yil 

Proof. The proof is straightforward. 0 
We call (4.11) an augmented scale secant update and the corresponding SQP 

Lagrangian secant method an SQP Lagrangian augmented scale secant method (see 
Algorithm A3 of Appendix A). In the case of the BFGS and DFP updates it is this 
change of scale that compensates for the fact that V2l(x*, A.) is not necessarily 
positive definite. For this reason we should choose C so that sTyS > 0. It will then 
follow that even though yfTs may be negative, the update will be a least-change 
secant update (see Theorem 7.3 of Dennis and More [7]). 

We now describe two situations in which the augmented scale update will be 
-independent of C; but in both of these cases the augmentation is not needed. 

PROPOSITION 4.2. The augmented scale PSB secant update is independent of 
the penalty constant C and therefore coincides with the usual PSB secant update. 

Proof. The result follows directly from the fact that the scale v is equal to s. El 
Proposition 4.2 is satisfying since it says that the augmentation that was intro- 

duced to compensate for the lack of positive definiteness is not needed. Indeed, we 
knew that the PSB update enjoyed this luxury. 

PROPOSITION 4.3. If Vg(x+)Ts = 0, then the augmented scale BFGS and DFP 
secant updates are independent of the penalty constant C and therefore coincide with 
the nonaugmented forms of the updates. 

Proof. The proof is straightforward. El 
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Again, the situation in Proposition 4.3 is as it should be. Specifically, Assump- 
tion A2 says that V2l(x*, A.) is positive definite on S(x.), where 

(4.12) S(x) = {fr: Vg(x)Tr = 0}. 

Consequently, for x and x+ near x*, and s such that Vg(x+)Ts = 0, we can expect 

yTs > 0 and the augmentation which was introduced to compensate for the lack 
of positive definiteness is not needed. In the case of linear constraints we will 
always have Vg(x+)Ts = 0. However, it is well known that in this case the SQP 
Lagrangian BFGS and DFP secant methods exhibit the proper theoretical and 
numerical properties since the iterates are always contained in S(x.). 

Recall that the Broyden convex class of secant updates consists of all updates 
which are a convex combination of the BFGS secant update and the DFP secant 
update; see Dennis and Schnabel [8] or Fletcher [10]. It is well known in the 
theory of unconstrained optimization that any update in the Broyden convex class 
possesses the hereditary positive definiteness property, i.e., if B is positive definite, 
yTs > 0 and v corresponds to the scale from a member of the Broyden convex class, 
then B+ as given by (1.7) is positive definite. 

In the case of the augmented scale secant update for constrained optimization 
we have the following appropriate analog of hereditary positive definiteness. Recall 
that S(x) has been defined in (4.12). 

PROPOSITION 4.4. Suppose that s, x+, y, and BI are such that BI is positive 
definite on S(x+) and yfTs > 0 if s E S(x+). Then for all C sufficiently large, Bl+, 
the augmented scale secant update of BI obtained from (4.11), using any update 
from the Broyden convex class, is also positive definite on S(x+). 

Proof. Choose C so large that Bs given in (4.7) is positive definite and 8TyS > 0, 
where ys is given by (4.6). It follows from the hereditary positive definiteness 
property enjoyed by secant updates from the Broyden convex class that (Bs)+ as 
given by (4.8) will be positive definite. Substituting (4.10) and (4.11) into (4.8) 
allows us to write 

(4.13) (Bs)+ - B+ = CVg(x+)Vg(x+)T. 

If rl E S(x+), then Vg(x+)Tr, = 0; hence (Bs)+ and B+ coincide on S(x+). It 
follows that B+ is positive definite on S(x+). O 

We would like to make some comments concerning our way of motivating the 
choice of ys given by (4.6). A short and direct argument for this choice would 
be as follows. An obvious implication of (3.2) is to choose Bs given by (4.7) as a 
structured Hessian approximation. It then readily follows from (4.7) that the choice 
for ys should be (4.6). However, in the following section we will employ structure 
in our choice for ys, but not in our choice for the Hessian approximation. Hence, 
an argument which does not use the choice of Bs to motivate (4.6) as the choice 
for ys is probably of value. 

In summary, then, it seems as if the complete use of structure has allowed us to 
identify and eliminate the undesirable by-products given by the SQP augmented 
Lagrangian secant formulation and pose an SQP Lagrangian secant formulation 
which maintains only the key desirable feature of a change of scale in the secant 
update. 
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5. The Structured Augmented Lagrangian Secant Update. It may be 
that in the SQP augmented Lagrangian secant method (Algorithm A2 of Appendix 
A) we wish to introduce structure in YL in (A.6) but not in BL. Toward this end, 
suppose that we have obtained s, x+ and A+ from the SQP augmented Lagrangian 
secant method, using BL as an approximation to V2L(x, A). We may consider the 
structured augmented Lagrangian update of BL, 

(5.1) B+ = BL + SECANT (S. YS, BL, VL), 

where ys is given by (4.6) or (A.11), VL = v(s, ys, BL) and v is the scale function 
of the particular secant update in question (see (1.7)). The Broyden convex class 
of secant updates was introduced in the previous section. See Proposition 4.4 in 
particular. 

PROPOSITION 5. 1. If BL is positive definite and C > 0 has been chosen so that 
Y> 0, then the structured augmented Lagrangian secant update of BL obtained 

from (5.1), using any update from the Broyden convex class, is also positive definite. 

Proof. This proposition is a consequence of the well-known hereditary positive 
definiteness property of secant updates from the Broyden convex class (see Dennis 
and Schnabel [8] or Dennis and More [7] for details). 0 

The following proposition is also straightforward. 

PROPOSITION 5.2. The structured augmented Lagrangian secant update (5.1) 
satisfies the structured augmented Lagrangian secant equation 

(5.2) B+s = ys. 

This algorithm has the flavor of the modified SQP Lagrangian BFGS secant 
method proposed by Powell (see (1.11)). In both instances, yl has been modified. 
However, while Powell loses the Lagrangian secant equation, we replace it with 
a structured form of the augmented Lagrangian secant equation. It is this con- 
sideration which will allow us to prove local q-superlinear convergence in Section 
7. 

6. Limit Updates. Since the SQP augmented Lagrangian secant method ex- 
hibits such poor performance for large C, it is natural to consider the asymptotic 
properties of the augmented scale secant update and the structured augmented 
Lagrangian secant update. We will be considering Algorithms A3 and A4 from 
Appendix A. 

If we let 0 = C/(1 + C), ye = (1- O)y + OVg(X+)Vg(X+)Ts, Bo = (1 - O)BI + 
OVg(x+)Vg(x+)T and observe that the secant update (1.7) has the property 

(6.1) SECANT (s, y, B, v) = SECANT (s, y, B, av) 

for any a $& 0, then we can write the scale in the augmented scale DFP update (see 

(1.9) and (A.9)) as 

(6.2) ve(DFP) = ye, 

and we can write the scale in the augmented scale BFGS update (see (1.10) and 

(A.9)) as 

(6.3) vo(BFGS) = ye + T Bos. 
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Observe that C = 0 corresponds to 0 = 0 and C = +00 corresponds to 0 = 1. Also 
observe that for 0 = 1 we have 

(6.4) vo (DFP) = 1 vo (BFGS) = Vg(x+)Vg(x+)Ts. 

These observations have led us to the following proposition. 

PROPOSITION 6.1. If Vg(x+)Ts $ 0 and we let C -x 00 in either the aug- 
mented scale DFP secant update or the augmented scale BFGS secant update, then 
we obtain the limit update 

(6.5a) B+ = BI + SECANT (s, yl, Bi, v.) 

with 

(6.5b) v* = Vg(x+)Vg(x+)TS. 

Since the Broyden convex class of updates consists of all updates which are a 
convex combination of the BFGS update and the DFP update, we have the following 
corollary. 

COROLLARY 6.2. Any member of the Broyden convex class of updates gives 
rise to the limit update (6.5). 

PROPOSITION 6.3. The limit update B+ given by (6.5) satisfies the Lagrangian 
secant equation B+s = yl and gives the following extreme form of hereditary positive 
definiteness. For rl E S(x+) = {rl E Rn: Vg(X+)Tr, = 0} 

(6.6) N7TB+?J = NT BI 7. 

Proof. The proof is straightforward. 5 
If we now look at the asymptotic properties of the structured augmented La- 

grangian secant updates, then we see from the discussion above that the scale is 
well-behaved and approaches (6.5b), the scale of the limit update. However, the 
quantity ys - BLS = yl + CVg(X+)Vg(X+)TS - BLS has no limit; so the update 
has no limit. 

7. Local q-Superlinear Convergence. In this section we establish local q- 
superlinear convergence of the SQP augmented scale Lagrangian BFGS and DFP 
secant methods and the SQP structured augmented Lagrangian BFGS, DFP and 
PSB secant methods described in Sections 4 and 5, respectively. 

The approach we will take to establish convergence for the structured algorithms 
can be thought of as a piggyback approach. The foundation of our approach will be 
the known convergence results for the SQP augmented Lagrangian secant methods 
(see Corollary 5.5 of Fontecilla, Steihaug and Tapia [12], for example). Specifically, 
we will derive perturbation bounds for the quantities associated with each of the 
structured algorithms in terms of the corresponding quantities associated with the 
well-known (unstructured) SQP augmented Lagrangian secant method. Bounded 
deterioration for the structured algorithm will then follow from the known bounded 
deterioration for the unstructured algorithm. Once bounded deterioration has been 
established, the local q-superlinear convergence of the structured algorithm will 
follow immediately from the Fontecilla-Steihaug-Tapia convergence theory. The 
Fontecilla, Steihaug and Tapia [12] convergence theory is cast in the framework 
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of the multiplier update formulation (see Section 2). Consequently, we will work 
with the equivalent multiplier update formulation of each of our structured SQP 
methods. In the case of the structured DFP algorithms, bounded deterioration also 
follows from the Dennis-Walker theory for structured updates [9]. 

Recall that the SQP augmented Lagrangian secant method can be found in 
Appendix A as Algorithm A2, the SQP Lagrangian augmented scale secant method 
can be found in Appendix A as Algorithm A3, and the SQP structured augmented 
Lagrangian secant method can be found in Appendix A as Algorithm A4. Also, 
recall that x* is a solution of problem (1.1) with associated multiplier A*. 

Suppose that we have determined x, A, x+ and A+. Let 

(7.1) yj = Vxl(x+, A+) - Vxl(x, A+), 

(7.2) YL = VxL(x+, A+) - Vx(x, A+), 

and 

(7.3) YL = yl + CVg(x+)Vg(x+)TS. 

In (7.3) the superscript S is used to signify that structure in the Hessian was 
utilized in forming this approximation. Our convergence analysis will depend on the 
following important estimates. Let S(RfXf) denote the space of n x n symmetric 
matrices. 

LEMMA 7. 1. Suppose that the standard assumptions given in Section 1 for 
problem (1.1) hold and C > 0 has been chosen so that V2L(x., A.) = V2l(x*, A*) + 
CVg(x*)Vg(x*)T is positive definite. Then there exist generic positive constants a 

and f and neighborhoods N1 C R' of x* and N2 C S(RnXn) of V2L(x*, A*) such 
that N1 C ? (see Al of Section 1) and for every (x, BL) E N = N1 x N2, BL is 

positive definite, 

(7.4) IIA+ - A*1I <131lx - x*II, 

where A+ is given by (2.3a), 

(7.5) x+ = x -BL1 VxL(x, A+) e Q, 

(7.6) - YLS-YLII ?< 3U(X, x+)I|sII, 
(7.7) IIVLS- VL II < 3IIYL - YL I, 

where vs = V( S, BL) and VL = v(S,YL, BL). Moreover, for w given by any one 
of the quantities yS, YL, VLS or VL, we have 

(7.8) aII8112 < WTS < 3118112 

and 

(7.9) IIWII < '311s11, 

and finally 

(7.10) IISECANT (sy y, BL,V) - SECANT (S,YL, BL,V)II ? 13U(X,X+), 

where the v used in the definition of any of the quantities appearing in (7.7)-(7.10) 
is the scale from either the BFGS, DFP or PSB secant update, the choice of norms 
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is arbitrary (the neighborhoods and constants depend on these choices), as usual 
s = x+-x and 

(7.11) u(x,x+) =max{IIx-x*II, IIx+-x*II}. 

Proof. We will give the proof using the 2-norm for all vector norms and the 
induced 2-norm for all matrix norms. That arbitrary norms can be used follows from 
the equivalence of norms in finite-dimensional spaces. The proof will be divided 
into parts. 

Proof of (7.4) and (7.5). The estimate (7.4) follows from observing that (2.3a) 
allows us to write 

(7.12) A+ -* = (Vg(x)T Bl1Vg(x))-l 
x [(g(x) - g(x*)) - Vg(x)TB-1(VxL(xA*) - VxL(x*,A*))]. 

For further detail, see the proof of Proposition 4.2 in Fontecilla, Steihaug and Tapia 
[12]. The statement (7.5) can be established with the aid of (7.4). 

Proof of (7.6). Combining (4.4) and (4.6) leads to 

(7.13) YL - = CVg(X+)[g(X+) - g(X) - Vg(X+)TS] + C[Vg(X+) - Vg(X)]g(X). 

The estimate (7.6) now follows from the standard assumptions and (7.13). 
Proof of (7.7). In the case of PSB and DFP, (7.7) is trivially satisfied. Before 

we consider the case of BFGS, we will derive some simple bounds. Let Amin, re- 
spectively Amax, denote the smallest, respectively largest, eigenvalue of the positive 
definite matrix V2L(x*, A*) and restrict N2, if needed, so that for each A E N2 we 
have 

(7.14) Amin2TS < STAs < 2AmaxS TS. 

Again, choosing smaller neighborhoods, if necessary, we can assume that 

V2 L(Ox+ + (1 - O)x, A+) 

satisfies (7.14) whenever (x, BL) E N and 0 E [0,1]. Now, for (x, BL) E N we 
have, using the mean value theorem, since y TS = STV2L(x + 0(x+ - x))s for some 
0 E (0,1), that 

(7.15) Amin TS < WTs < 2AmaxSTS 

for w = YL. Essentially the same argument establishes (7.15) for w = 

The mean value theorem on the function h(y) = V combined with (7.15) for 
w = YL and w = yS gives 

(7.16) IVT - 8Ty S ? IIYL - YLI 2Amin. 

By combining (7.14) and (7.16) we obtain the bound 

(7.17) IIVL - vII < [1 + 2 ] IIYL - YL II 
whenever (x, BL) Nmin. 

whenever (x, BL) E N. 
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Proof of (7.8). Inequality (7.8) is a restatement of (7.15) for w equal to YL or ys. 
In the case of PSB and DFP, (7.8) holds trivially. For the BFGS scale v = v(s, y, B) 
we can write 

v Ts YTs y ssTBs 
(7.18) vT8 = 8T8 + T 8T8 

Now, by choosing B in (7.18) to be any member of the neighborhood N2 and using 
(7.14) and (7.15) we see that 

(7.19) Amin < ?T 4Amax 

for w equal to VL or VLs. Thus we have established (7.8) for all three choices of 
scale. 

Proof of (7.9). From the mean value theorem we can write 

(7.20) IIYLII < IIV2L(x + Os, A+) II IIsI 
for some 0 E [0,1]. It follows from (7.14) and the comments following (7.14) that 

(7.21) IIYLII < 2AmaxII811- 

Thus, (7.9) holds for w = YL. Exactly the same proof can be used to establish (7.9) 
for w = yS 

We must now establish (7.9) for w equal to VL and vs for the three choices of 
scale under consideration. Again, for the choice of scale corresponding to the PSB, 
update (7.9) is trivially satisfied for w equal to VL and vS; indeed, w = s for this 
choice. Also, for DFP we know that VL = YL and vS = YS, and (7.18) has already 
been established for these two choices. For the BFGS choice of scale we can write 

(7.22) V = V(sy, B) = y + TBs. 

For v = VL, Y = YL, B = BL and (x,BL) E N1 x N2, (7.22), (7.21), (7.15) and 
(7.14) allow us to write 

(7.23) IIVLII < 2Amax (1 + 2 max) Is. 

Exactly the same argument can be used to establish (7.23) with VL replaced by vL. 
We have established (7.9) for all three choices of scale. 

Proof of (7.10). A lengthy but straightforward calculation which uses the bounds 
(7.6)-(7.9) and adds and subtracts various appropriate quantities establishes (7.10). 
This proves the lemma. 5 

Consider the SQP augmented Lagrangian PSP, DFP and BFGS secant methods 
given by Algorithm A2 of Appendix A, where 

(7.24) B+ = BL + SECANT (8,YL, BL,V) 

and v is the choice of scale corresponding to each of the respective algorithms, i.e., 
v is given by either (1.8), (1.9) or (1.10). It is well known that these algorithms are 
locally q-superlinearly convergent. These results have been established by several 
authors (see Corollary 5.5 of Fontecilla, Steihaug and Tapia [12], for example). 
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The form of bounded deterioration that has been established for the SQP aug- 
mented Lagrangian PSB, respectively DFP secant method is the following: 

There exist positive constants a1 and a2 and neighborhoods N1 C R' of x* and 
N2 C S(RflXfl) of V2L(x., A.) such that for (x, BL) E N = N1 x N2 and (x+, A+) 
given by (2.3) we have 

(7.25) IIBi+ -VXL(x*, A*) IIM 
? [1 + aau(x, x+)]IIBL - V L(x*, A*)IIM + a2U(X, X+), 

where u(x, x+) is given by (7.11) and BL+ is given by (7.24) with the scale v given by 
(1.8), respectively (1.9), and 11 IIM denotes the Frobenius, respectively a particular 
weighted Frobenius norm. 

The form of bounded deterioration that has been established for the SQP aug- 
mented Lagrangian BFGS secant method is the following: 

There exist positive constants a1 and a2 and neighborhoods N1 C R' of x* and 
N2 C S(RflXfl) of V2L(x*, A*) such that for (x, BL) E N = N1 x N2 and (x+, A+) 
given by (2.3) we have BL+ is positive definite and 

(7. 26) 11(L VL (X* )1M 
< [1 + caj(x, x+)]IIB-' - V2L(x*, A*)- IM + a2U(X, X+), 

where u(x, x+) is given by (7.11), BL+ is given by (7.24) with the scale v given by 
(1.10), and 11 IIM denotes a particular weighted Frobenius norm. 

We are now ready to establish our convergence results. 

THEOREM 7.2. Suppose that the standard assumptions given in Section 1 for 
problem (1.1) hold and C > 0 has been chosen so that V2L(x*, A*) = V2l(x*, A*) + 
CVg(x*)Vg(x*)T is positive definite. Then there are positive constants e, 6 such 
that for x0 E Rn and symmetric B? E RfXf satisfying IIxo - X* < e and IIB? - 
V21(X*,A*)II < 6 the iteration sequence {Xk} generated by the SQP Lagrangian 
augmented scale BFGS or DFP secant method is q-superlinearly convergent to x*. 

Proof. We will first establish bounded deterioration for the augmented scale 
DFP update. From Lemma 7.1 we have a neighborhood of x* called N1, and 
associated with (7.25) we have another neighborhood of x* also called N1. Let us 
redefine N1 to be the intersection of these two neighborhoods of x*. We do the same 
thing to obtain the neighborhood N2 of V2L(x*, A*). Now, choose a neighborhood 
N3 C S(RfXf) of V2l(x*, A*) and restrict N1, as needed, so that (x, B1) E N1 x N3 
implies that BI + CVg(X+)Vg(X+)T E N2. 

Recall that from Section 2, Proposition 3.1 and Proposition 4.1 the SQP aug- 
mented scale Lagrangian secant method can be equivalently written as 

(7.27a) x+ = x - Bs-VxL(x, A+), 

(7.27b) B+ = B+ + CVg(X+)Vg(X+)T, 

where 

(7.28) BS = B1 + CVg(X)Vg(X)T, 

A+ is given by (2.3a) with BS playing the role of BL, 

(7.29) B+ = Bl + SECANT (s, yLS, BLs, V), 
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where yS is given by (7.3) and 

(7.30) Bs = B1 + CVg(X+)Vg(X+)T. 

Define 

T(w, z) = B1 + CVg(W)Vg(W)T + SECANT (s, z, Bs, v) 

for (x, B1) E N1 x N3, w E {x, x+}, and z E {YL, YLS}, where YL is given by (7.2). 
From Lemma 7.1, inequality (7.25) and an obvious bound we have 

JIB+ - B*IIM = |IT(x+,ys) - B*IIM 

? IIT(x+, YL)-B* II M + IIT(x+, ys)-T(x+, YL) IM 

(7.31) ? [1 + aa] JIBS - B*JIM + Du 
? [1 + aoa][IlBs -B*IM + IIBs - BsIM] + Dao 
< [1 + aoi]JIBs - B*IIM + ceo, 

where B* = V2L(x*, A*), a = u(x, x+) and a, and a' are positive constants. 
The bounded deterioration inequality (7.31) and the fact that the update formula 

(2.3a) is x-dominated (i.e., we can establish (7.4) with 1 < 1 as is done in the proof 
of Proposition 4.2 of Fontecilla, Steihaug and Tapia [12]) allows us to establish the 
existence of the constants E and 6 in the statement of this theorem and the q-linear 
convergence of the iteration sequence {Xk} as a direct consequence of Theorem 3.1 
in Fontecilla, Steihaug and Tapia [12]. 

Now, in turn, the q-linear convergence of {Xk} allows us to use an argument 
identical to the one used by Broyden, Dennis and More [5] to show that 

lim I(B 
k 

- V2L(x*, 
A*))skIIll0 (7.32) kl0 | 18k! | 

where the interpretation of the index k in (7.32) is obvious. Having established 
(7.32), we return to Theorem 5.3 of Fontecilla, Steihaug and Tapia [12] to estab- 
lish the q-superlinear convergence of the iteration sequence {Xk}. This proves the 
theorem for the case of the DFP update. 

In the case of the BFGS algorithm we follow the standard approach of establish- 
ing convergence by working with the inverse update. From Lemma 7.1, inequality 
(7.26) and the well-known Banach Perturbation Lemma, further restricting N1 and 
N3 if necessary, we can determine a constant -y so that T(w, z)-1 exists and 

(7.33) JIT(w, z)-1 11 < ay 

whenever (x, B1) E N1 x N3, w E {x, x+} and z E {YL, YS} 
Using Lemma 7.1, inequalities (7.26) and (7.33), the Banach Perturbation Lem- 

ma, working with T(w, z)-1 instead of T(w, z) and taking exactly the same steps 
as were taken in the derivation of (7.31), we obtain 

(7.34) II(B+)-1 - V2L(x*, A*)-1 JIM < [1 + a1a]IIB-1 _ V2L(x*, A*)-1 IIM + Ra' 

where a = a(x, x+) and a, and a' are positive constants. 
The local and q-superlinear convergence of the SQP Lakgrangian augmented scale 

BFGS secant method now follows from the bounded deterioration inequality (7.34) 
using an argument similar to the one used in the case of the DFP update. 5 
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THEOREM 7.3. Suppose that the standard assumptions given in Section 1 for 
problem (1.1) hold and C > 0 has been chosen so that V'L(x., A.) = V21(x*, A*) + 
CVg(x*)Vg(x*)T is positive definite. Then there are positive constants E, 6 such 
that for xo E R' and symmetric Bo E R'Xf satisfying Ixo - x*11 < E and 11B2- 
V2L(x*,A*)II < 6 the sequence {Xk} generated by the SQP structured augmented 
Lagrangian BFGS, DFP or PSB secant method is q-superlinearly convergent to x*. 

Proof. The proof is basically the same as the proof of Theorem 7.2. However, 
in this case the derivation of the bounded deterioration inequalities is slightly less 
complicated. 0 

8. Summary and Concluding Remarks. In this paper we have taken a very 
close look at the structure present in the Hessian of the augmented Lagrangian. 
The understanding gained from this look motivated two new classes of SQP secant 
methods for the equality-constrained optimization problem. 

The SQP augmented scale secant methods were derived by considering the SQP 
augmented Lagrangian secant method, utilizing structure as completely as possi- 
ble, and then observing that the penalty constant cancels out in all parts of the 
algorithm except in the scale of the secant update. This leaves an SQP Lagrangian 
secant method with a modified scale. It follows from the fact that yfTs is not nec- 
essarily positive that the augmented scale BFGS and DFP updates do not possess 
the hereditary positive definiteness property. However, they do have the heredi- 
tary positive definiteness property on a proper subspace (see Proposition 4.4). The 
change of scale compensates for the lack of positive definiteness in the Hessian of the 
Lagrangian and allows us to conclude (from Lemma 9.2.1 of Dennis and Schnabel 
[8] and Theorem 7.3 of Dennis and More [7]) that the augmented scale BFGS and 
DFP updates are least-change secant updates. This change of scale also allowed 
us in Section 7 to establish local q-superlinear convergence of the SQP augmented 
scale BFGS and DFP secant methods. We believe that this convergence result 
is the first that establishes either local or q-superlinear convergence of an SQP 
Lagrangian secant method which uses either the BFGS or the DFP updating phi- 
losophy and assumes no more than the standard assumptions. Recall that Powell 
[18] assumed convergence and established an r-superlinear convergence rate. Boggs 
and Tolle [3] assumed convergence and used additional assumptions to establish the 
q-superlinear convergence rate. 

The SQP structured augmented Lagrangian secant methods are derived by con- 
sidering the SQP augmented Lagrangian secant methods and utilizing structure 
only in the y vector used in the secant update (see (1.6)). The choice for the y 
vector is ys given by (4.6) and the constant C is chosen so that sTyS > 0. It 
follows that the BFGS and DFP updates possess the hereditary positive definite- 
ness property. These algorithms have the flavor of the modified SQP Lagrangian 
BFGS secant method proposed by Powell [18] (see (1.11)). In both cases, y is 
modified so that the modified y will have a positive inner product with the step s 
and hereditary positive definiteness is achieved. While Powell's modification gives 
hereditary positive definiteness at the expense of the LAgrangian secant equation, 
our modification gives hereditary positiveness definiteness and satisfies a structured 
augmented Lagrangian secant equation. That our choices of y and secant equation 
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are compatible was demonstrated by the fact that we were able to establish lo- 
cal q-superlinear convergence of the SQP structured augmented Lagrangian BFGS, 
DFP and PSB secant methods. Local convergence has not been established for the 
Powell algorithm. 

In Section 6 we showed that for any secant update from the Broyden class, e.g., 
BFGS or DFP, the augmented scale update has the property that as the penalty 
constant approaches infinity, the scale approaches a scale which involves only the 
gradients of the constraints and does not involve the gradient of the Lagrangian. 
We call the secant update with this limiting scale the limit update. 

In the original version of this paper, the author implied that an SQP Lagrangian 
secant method which used the limit update might be a viable algorithm. Both 
referees expressed serious doubts about such a possibility and documented these 
doubts in a convincing manner. These concerns motivated the author, with the aid 
of graduate student Hector Martinez at Rice University, to conduct a numerical 
investigation of the SQP Lagrangian secant method using the limit update. We ob- 
served that if an iterate was far from being feasible, then the algorithm produced a 
good step and the subsequent iterate was usually closer to being feasible. However, 
if an iterate was nearly feasible, then the behavior of the algorithm deteriorated and 
the subsequent iterates converged slowly. In retrospect, we see that for many rea- 
sons, including the form of the scale in the limit update, this behavior should have 
been expected. Moreover, as one referee pointed out, the limit update is actually 
a discontinuous function of s. Specifically, if Vg(X+)TS = 0, then the augmented 
scale is the standard scale and the limit update is the update corresponding to this 
scale. However, if in the limit update we let s -* s*, where Vg(x+)s* = 0, then the 
scale converges to zero and the update with a zero scale is undefined. This will not 
be the case for any augmented scale with a finite value of C. It is fair to conjecture 
that the limit update does not lead to an algorithm which is locally q-superlinearly 
convergent. The analysis given in Section 7 fails for the limit update. However, 
from Lemma 9.2.1 of Dennis and Schnabel [8] and Theorem 7.3 of Dennis and More 
[7] the limit update is a least-change secant update. 

It follows, then, that the existence of the limit update should be interpreted as a 
robustness property of the SQP Lagrangian augmented scale BFGS and DFP secant 
methods which is not shared by the SQP augmented Lagrangian BFGS and DFP 
secant method described in Section 2 or the SQP structured augmented Lagrangian 
BFGS or DFP secant method described in Section 5. Namely, if it happens in a 
particular iteration that C is chosen to be excessively large, then we should expect 
that the algorithm may not give much improvement; but we should not expect a 
complete disaster (as is the case for the usual SQP augmented Lagrangian BFGS 
and DFP secant methods). 
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motivated the author to establish the approach to convergence presented in Section 
7. 

Appendix A. The Various SQP Secant Methods. In this appendix we 
collect and catalog the various SQP secant methods discussed in the main body of 
this paper. Recall that these algorithms approximate a solution of the equality- 
constrained optimization problem (1.1). Also recall that the Lagrangian l(x, A) 
associated with problem (1.1) is given by (1.4). 

ALGORITHM Al: SQP Lagrangian Secant Method. By a successive quadratic 
programming (SQP) Lagrangian secant method for problem (1.1) we mean the 
iterative process 

(A.la) x+=x+s, 

(A. lb) A+ =A+ AA, 

(A.lc) B+ = B1 + SECANT (s, yl, B1, v(s, yl, Bl)), 

with SECANT (s, y, B, v(s, y, B)) given by (1.7b), 

(A.2) yl = Vxl(x+, A+) -- Vxl(x, A+), 

and s and ?AA are respectively the solution and the multiplier ass-ociated with the 
solution of the quadratic program 

minimize V.l(x, A)Ts + ST B1 S 

subject to Vg(x)Ts + g(x) = 0. 

Notice that B+ will satisfy the Lagrangian secant equation 

(A.4) B+s =-Y. 

ALGORITHM A2: SQP Augmented Lagrangian Secant Method. By a successive 
quadratic programming (SQP) augmented Lagrangian secant method for problem 
(1.1) we mean the iterative process 

(A.5a) x+= x + s, 

(A.5b) A+ A + AA, 

(A.5c) BLj = BL + SECANT (S, YL, BL, V(S, YL, BL)), 

with SECANT (s, y, B, v(s, y, B)) given by (1.7b), 

(A.6) YL = VxL(x+, A+) - VxL(X, A+), 

s and AA are respectively the solution and the multiplier associated with the solu- 
tions of the quadratic program 

minimize VxL(x, A)Ts + ST BLS 

subject to Vg(X)TS + g(x) = 0. 

Notice that BL+ will satisfy the augmented Lagrangian secant equation 

(A.8) B+S = YL. 
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ALGORITHM A3: SQP Lagrangian Augmented Scale Secant Method. By an SQP 
Lagrangian augmented scale secant method we mean an SQP Lagrangian secant 
method, i.e., Algorithm Al, where the choice for B+ in (A.lc) is 

(A.9) B+ = B1 + SECANT (s, yl, B1, vL) 

with SECANT (s, y, B, v) given by (1.7b), and for a given choice of scale v = 

v(s, y, B) the augmented scale VL is defined to be 

(A. 10) VL = v(81 YS, BS), 

where 

(A.11) YL= y + CVg(x+)Vg(x+)Ts 

and 

(A.12) Bs = Bi + CVg(x+)Vg(x+)T 

for some C > 0. 
ALGORITHM A4: SQP Structured Augmented Lagrangian Secant Method. By 

an SQP structured augmented Lagrangian secant method we mean an algorithm of 
the form of Algorithm A2, where the choice for B+ in (A.5c) is 

(A.13) B+ = BL + SECANT (s, y, BL, v(s, yS, BL)) 

with SECANT (s, y, B, v(s, y, B)) given by (1.7b) and ys given by (A.11), i.e., 

(A. 14) YL = VXl(x+, A+) - VXl(x, A+) + CVg(x+)Vg(x+)Ts. 

In this case, B+ satisfies the structured augmented Lagrangian secant equation 

(A. 15) B+s = YL' 

which is not the same as the augmented Lagrangian secant equation (A.8) because 
of the fact that ys in (A.14) employs structure and differs from YL in (A.8). 

Appendix B. The Role of the Term Cg(x) V2g(x). We will attempt to 
justify the claim made in Section 3 that the role the term Cg(x) V2g(x) plays 
in the SQP augmented Lagrangian quasi-Newton methods (see Algorithm A2 of 
Appendix A) is a negative one and all attempts at utilizing structure should lead 
to approximations which ignore this second-order term. 

Consider the SQP augmented Lagrangian quasi-Newton method, where Bs is 
given by 

(B.1) Bs = Bi + Cg(x) . V2g(x) + CVg(x)Vg(x)T 

with B1 interpreted as an approximation to V2l(x, A). From Section 2 we know that 
the defining relations for the SQP augmented Lagrangian quasi-Newton method are 
given equivalently by (2.2). As long as C $ 0, we can divide the first equation in 
(2.2) by C without changing the solution set. Now, if we let C become arbitrarily 
large, we see that our defining relations approach the limiting defining relations 

(B.2) (g(x) V2g(x) O) ( = - 
=_ (x)/ 
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The defining relations (B.2) are clearly singular. Moreover, we cannot guarantee 
that they are consistent. Indeed, they will be inconsistent in any application where 
g(x) V2g(x) is nonsingular, e.g., g(x) = xTx 1 and x such that g(x) :$ 0. 

The above observation may shed some light on the situation concerning the 
poor numerical performance of the SQP augmented Lagrangian secant methods for 
large C. Toward this end, let us attempt to identify those attributes of the SQP 
formulation and the augmented Lagrangian which have created this bad fit. 

From (2.2) and (B.1) we see that one SQP augmented Lagrangian quasi-Newton 
step consists of constructing (x+, A+), where x+ = x + s and (s, A+) is the solution 
of the linear system 

(B.3) [B1 + Vxl(x, A+)] + C[(g(x) * V2g(X) + Vg(X)Vg(X)TS + Vg(x)g(x)] = 0, 

(B.4) Vg(x)T + g(x) = 0. 

Equation (B.3) can be viewed as a weighted average of the two equations 

(B.5) Bis = -Vxl(x, A+) 

and 

(B.6) (g(x) V2g(x) + Vg(x)Vg(x)T)s = -Vg(x)g(x). 

We recognize (B.5) as a quasi-Newton step for the nonlinear equation problem 

(B.7) VXl(x, A+) = 0 

and (B.6) as a Newton step for the unconstrained optimization problem 

(B.8) minimize g(X)Tg(X). 

The second equation in the SQP formulation, namely (B.4), can be viewed as a 
(right-inverse) Newton step for the nonlinear equation 

(B.9) g(x) = 0. 

It follows that increasing C in this SQP formulation corresponds to requiring greater 
agreement between the Newton iterate for problem (B.8) and a particular right- 
inverse Newton iterate for problem (B.9). Moreover, not only is there no reason 
that these two iterates should agree, but as we have seen, there are cases in which 
they cannot agree. 

In summary, then, we have seen that in the SQP formulation the augmented 
Lagrangian itself takes the constraints into account, and adding the requirement 
that the iterate satisfy linearized constraints is in effect restricting the algorithm, 
i.e., overdetermining the iterate. It follows that the term g(x) V2g(x) and the 
satisfaction of linearized constraints are incompatible. If we remove the term 
g(x) V2g(x) from the SQP augmented Lagrangian formulation, then from (B.3) 
and (B.4) (equivalently Proposition 3.1) we see that, except possibly for the up- 
dating of the Hessian approximation B1, the role of the penalty constant has been 
eliminated and the augmented Lagrangian subproblem has been reduced to that 
of the Lagrangian. Clearly, this is the situation described in Section 4, where the 
SQP Lagrangian augmented scale secant methods are presented. 
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